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Background—Pancreatic cancer is the fourth-leading cause of cancer death in both men and 

women in the United States. Identified common susceptibility loci account for a small fraction of 

estimated heritability. We sought to estimate overall heritability of pancreatic cancer and partition 

the heritability by variant frequencies and functional annotations.

Methods—Analysis using the genome-based restricted maximum likelihood method (GREML) 

was conducted on Pancreatic Cancer Case-Control Consortium (PanC4) genome-wide association 

study data on 3,568 pancreatic cancer cases and 3,363 controls of European Ancestry.

Results—Applying LD- and MAF-stratified GREML (GREML-LDMS) to imputated GWAS 

data, we estimated the overall heritability of pancreatic cancer to be 21.2% (s.e. = 4.8%). Across 

the functional groups (intronic, intergenic, coding and regulatory variants), intronic variants 

account for most of the estimated heritability (12.4%). Previously identified GWAS loci explained 

4.1% of the total phenotypic variation of pancreatic cancer. Mutations in hereditary pancreatic 

cancer susceptibility genes are present in 4–10% of pancreatic cancer patients, yet our GREML-

LDMS results suggested these regions explain only 0.4% of total phenotypic variance for 

pancreatic cancer.

Conclusions—While higher than previous studies, our estimated 21.2% overall heritability may 

still be downwardly biased due to the inherent limitation that heritablity due to individually rare 

variants in a gene with a substantive ovarll impact on disease are not captured in these commonly 

used methods

Impact—Our estimate of pancreatic cancer heritability estimates indicate both rare and common 

variants contribute to missing heritability, while suggesting caution when using this approach to 

quantify the impact of rare variants.
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INTRODUCTION

Pancreatic cancer is one of the most lethal malignant neoplasms across the world. The 

highest incidence and mortality rates are found in North America and Western Europe, 

followed by other more developed regions1. Pancreatic cancer is currently the fourth-leading 

cause of cancer death in both men and women in the United States, responsible for an 

estimated 44,330 deaths in 20182. By 2030, pancreatic cancer is predicted to become the 

second most common cause of cancer mortality3. Up to 10% of pancreatic cancer patients 

report having a first-degree relative (FDR) affected by the disease, and up to 10% of all 

newly diagnosed pancreatic cancer patients harbor a germline mutation in a hereditary 

pancreatic cancer susceptibility gene4–6.

While only a handful of studies have examined the heritability of pancreatic cancer, a large 

population-based twin study in European countries estimated the heritability of pancreatic 

cancer to be 36% (95% CI: 0–53%)7. Inherited genetic mutations in 11 genes including 

BRCA2, ATM, CDKN2A, PALB2, BRCA1, PRSS1, STK11, MLH1, MSH2, MHS6, and 

PMS2 have been associated with an increased risk of pancreatic cancer. Overall, 8 to 30% of 
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familial pancreatic cancer (FPC) patients 8–11 and 3 to10% of unselected pancreatic cancer 

cases4–6, harbor a deleterious mutation in one of these 11 genes, demonstrating the 

important role of these genes in the pancreatic cancer susceptibility. Recent genome-wide 

association studies (GWAS) in European12–17 and Asian18,19 populations have identified 26 

independent common susceptibility loci for pancreatic cancer. Despite the large sample sizes 

of these GWAS, the identified common susceptibility loci together explain < 5% of the total 

phenotypic variation (pancreatic cancer/not pancreatic cancer) for pancreatic cancer20,12,21. 

Comparing this with the family-based estimate of heritability (36%)7, it appears that a large 

proportion of heritability is unexplained, highlighting the so-called “missing heritability” 

problem. Except for some conditions, such as age-related macular degeneration in which 

heritability is substantially explained by a small number of common variants of large effect, 

for most complex traits or diseases the proportion of heritability explained remains small 

despite a large number of identified variants22. Potential sources of missing heritability are 

thought to be either rare variants not well tagged by GWAS arrays or the common variants 

that have not yet reached statistical significance in prior GWAS studies. Given that genetic 

architecture varies across traits, the sources of missing heritability are likely variable as well.

To better understand the sources of missing heritability, approaches including the genomic 

relatedness-based restricted maximum-likelihood (GREML) were developed to quantify the 

cumulative effects of causal variants in populations of unrelated individuals23. Heritability 

estimation using pedigree data is a foundation of genetic epidemiological studies. However 

given the late age of onset and rarity of pancreatic cancer, there is limited power even in 

studies using the largest registries to estimate the heritability of pancreatic cancer24. In 

addition, it has been suggested that pedigree-based heritability estimates can be upwardly 

biased due to the sharing of non-genetic factors among pedigree members25,26. In contrast, 

newer methods such as GREML, that estimates genetic relationships using genome-wide 

array, are thought to overcome this bias. The early version of GREML, single-component 

GREML (GREML-SC), has been widely applied in GWAS to estimate heritability. In 

pancreatic cancer GWAS, heritability using this approach was reported to range from 9.8% 

to 18%12,21,20.

However, despite its wide application in GWAS studies, heritability estimated from 

GREML-SC is known to be biased27. To overcome this bias, a multi-component GREML 

approach was developed which allows for stratification on minor allele frequency (MAF) 

and linkage disequilibrium (LD). The LD- and MAF-stratified GREML (GREML-LDMS) 

has been shown to produce more valid estimates of heritability across different simulated 

scenarios28,27. The multi-component GREML approach not only provides less biased 

heritability estimates but also allows for the estimation of heritability components from 

different variant sets.

The goal of this study was to understand the genetic architecture of pancreatic cancer by 

applying a multicomponent approach to GWAS array data after imputation.
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MATERIALS AND METHODS

Study Participants

The data used in this study were obtained from the Pancreatic Cancer Case Control 

Consortium (PanC4) GWAS, which comprises nine hospital-based or population-based case-

control studies (http://panc4.org)12. Participating sites include Johns Hopkins Hospital 

(Baltimore MD), Mayo Clinic (Rochester, MN), MD Anderson Cancer Center (Houston, 

TX), Memorial Sloan-Kettering Cancer Center (New York, NY), Yale University (New 

Haven, CT), University of Toronto (Toronto, Canada), University of California San Diego 

(San Diego, CA), Queensland (Queensland, Australia), and International Agency for 

Research on Cancer (Central Europe). Cases were defined as individuals with 

adenocarcinoma of the pancreas and controls were individuals without a diagnosis of 

pancreatic cancer sampled from the general population or hospital catchment area as 

described previously13. In brief, the mean age of cases was 64.7 years compared to 63.1 

years in controls, 58% of the participants were male and 95% reported European Ancestry. 

This study was reviewed and approved by the Institutional Review Board of the Johns 

Hopkins University School of Medicine and of each participating institution. Informed 

consent was obtained from all participants in this study.

Genotyping, Imputation, and Quality Control (QC)

7,956 PanC4 participants were genotyped with the IlluminaHumanOmniExpressExome-8v1 

array; additional variants were imputed using IMPUTE v229 to the 1000 Genomes (Phase 3, 

v3)30 reference panel using IMPUTE v229. Details on the genotyping and imputation have 

been described previously13. After imputation, the genotype imputation probabilities were 

converted to hard genotype calls using PLINK31 (the genotype with the highest probability 

was the hard genotype unless the difference between the highest two probabilities is less 

than 0.1, in which case genotypes were set to missing). The following quality control filters 

were applied to the 81,671,345 autosomal variants in accordance with the GREML 

recommendations in which we: 1) removed 372 known non-European samples; 2) dropped 

variants with INFO score less than 0.50; 3) dropped variants that failed Hardy-Weinberg 

equilibrium exact test at p < 10−6; and 4) dropped variants with a minor allele count of less 

than 5 (equivalent to a MAF < 0.0003). After quality control checks, 1.9% variants with 

missingness greater than 5% were excluded, and 60% of the variants were dropped due to 

being monomorphic. As GREML is sensitive to cryptic relatedness, genetic relatedness was 

determined using 99,138 common (MAF > 0.05) and independent (pairwise r2 > 0.20) 

variants directly genotyped in the dataset. At a relatedness cutoff of 0.025, 653 distantly 

related individuals were excluded. The final dataset contained 6,931 samples and 16,184,129 

variants (Supplementary Figure 1). Annotation of the variants was obtained from 

ANNOVAR32. The functional predictions were derived from the NCBI Reference Sequence 

Database33.

Statistical Analysis

Estimation of heritability using GREML-LDMS—The proportion of phenotypic 

variation explained by all imputed variants was estimated in a GREML-LDMS model. 

Variants were stratified into two MAF bins (MAF < 0.01 and MAF ≥ 0.01), as well as two 
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LD groups as above or below the median regional LD score. A sliding window method was 

used to determine the regional LD score for each variant34. The genetic relationship matrix 

(GRMs) from each MAF-LD stratum were calculated and fitted jointly in a mixed linear 

model using the average information approach for variance estimation. Estimates of variance 

were transformed from the observed 0–1 scale to the unobserved continuous ‘liability’ scale 

using a probit transformation35. A disease prevalence of 0.0149 was specified, which 

corresponds to the lifetime risk of being diagnosed with cancer of the pancreas for US 

whites in the 2009–2011 SEER report36. All analyses were adjusted for age, sex and the first 

20 principal components. The variance in the liability scale was reported along with its 

standard errors. Potential bias in the estimated heritability due to residual population 

stratification and/or relatedness was quantified by comparing the variance explained by 

individual chromosomes in a separate analysis to that in a joint analysis, as previously 

described37. For all analyses, standard errors of the summed variance were calculated from 

the sample variance/covariance matrix using the delta method.

Genomic Partitioning by Chromosome—To determine the variance captured by each 

autosomal chromosome, the variants in four MAF-LD groups were further allocated to 22 

autosomal chromosomes, resulting in 88 MAF-LD-chromosome strata. The Fisher scoring 

approach was used in this analysis for variance estimation. The variance captured by each 

chromosome was aggregated from the variance due to four MAF-LD groups allocated to 

each chromosome. Linear regression was performed to assess the correlations between 

variance explained by an individual chromosome and the length of the chromosome, defined 

as the total number of variants in the chromosome.

Genomic Partitioning by MAF—To improve the resolution in the MAF distribution of 

causal variants, variants were binned into six MAF categories: 0.0003 ≤ MAF < 0.01, 0.01≤ 

MAF < 0.10, 0.10 ≤ MAF < 0.20, 0.20 ≤ MAF < 0.30, 0.30 ≤ MAF < 0.40 and MAF ≥ 0.40. 

Variants in each MAF category were then stratified by their regional LD score (above vs. 

below median LD) as done previously, resulting in twelve MAF-LD strata. GRMs calculated 

from each stratum were fitted jointly in a mixed linear model. The variance captured by each 

MAF category was aggregated from the variance due to two LD strata within the MAF 

category.

Genomic Partitioning by Functional Annotations—Imputed variants were 

categorized in four functional groups: coding (including exonic and splicing variants); 

intergenic; intronic; and regulatory (including non-coding RNA, variants in untranslated 

regions [UTR], and upstream/downstream variants). Variants in each of the four functional 

groups were further stratified into two MAF categories and two LD groups as in previous 

analysis. In the joint analysis of all functional groups, the variance explained by each 

functional category was summed from the variance due to four MAF-LD strata within the 

functional category.

Contribution of GWAS Loci—A total of 26 loci previously identified by GWAS have 

reported to be significantly associated with pancreatic cancer risk at the genome-wide 

level12–19. The index SNP or the variants with the strongest LD (pairwise r2 in 1000 
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Genomes EUR population) to the index SNP were included in the estimate to capture the 

GWAS signals. Then all variants within ±250 kb of the index SNP were grouped together 

with the index SNP as a single genetic component. The remaining variants across the 

genome were stratified into two MAF categories and two LD groups as in previous analyses. 

The variance explained by the GWAS loci was estimated by fitting five GRMs jointly in a 

mixed linear model.

Contribution of Established FPC Genes—To evaluate the contribution of established 

FPC genes, all variants located within ±50 kb of gene boundaries (3’ UTR to 5’ UTR) of 

these genes were used to calculate a single GRM. The remaining variants across the genome 

were stratified into two MAF categories and two LD groups as described previously. The 

variance explained by these eleven genes was estimated by fitting five GRMs jointly in a 

mixed linear model.

Results

The final analytical population included 3,568 pancreatic cancer cases and 3,363 controls, 

all of whom were of European ancestry and aged 40 years or older. Cases and controls were 

similar in sex and age distributions. Figure 1A shows the distribution of MAFs in the final 

dataset containing 16,184,129 variants. The majority of the variants have a MAF < 5%. The 

remaining variants are evenly distributed across the MAF frequency categories. More than 

half of the variants in the final dataset are intergenic (52.7%) or intronic (37.2%). About 1% 

of the variants were located in coding regions (Figure 1B).

In PanC4 study, imputed variants explained in total of 21.2% (s.e. = 4.8%) phenotypic 

variation for pancreatic cancer (Table 1). We assessed the potential inflation due to residual 

population stratification and/or cryptic relatedness by examining heritability on each 

individual chromosome, and obtained an estimate of 0.31%, suggesting minimal inflation.

Genomic partitioning of the estimated heritability can provide valuable insights on the 

underlying genetic architecture of the disease. The estimated variance associated with each 

autosomal chromosome is shown in Figure 2. Chromosome 9 accounted for the largest 

proportion of genetic variation (h2 = 2.3%, s.e. = 1.6%), followed by chromosome 7 (h2 = 

2.1%, s.e. = 1.8%). Chromosomes 8 (h2 = 1.8%, s.e. = 1.7%), 16 (h2 = 1.8%, s.e. = 1.4%), 5 

(h2 = 1.5%, s.e. = 1.9%), 2 (h2 = 1.5%, s.e. = 2.0%), and 1 (h2 = 1.5%, s.e. = 2.0%). 

Common susceptibility loci for pancreatic cancer have been identified in GWAS studies on 

each of these chromosomes. Regression of the variance explained by individual 

chromosomes on the length of the chromosome found no correlations (Supplementary 

Figure 2).

Partitioning of the estimated heritability by six MAF categories found a substantial amount 

of genetic variation for pancreatic cancer attributed to rare variants, with h2 = 6.9% (s.e. = 

3.8%) for variants with MAF < 0.01, corresponding to 1/3 of the estimated heritability 

(Figure 3). Variants with 0.01 ≤ MAF < 0.10 explain a comparable amount of variance for 

pancreatic cancer (h2 = 6.2%, s.e. = 3.1%).
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In the genomic partitioning by functional groups, intronic and intergenic variants account for 

12.4% (s.e. = 6.6%) and 6.0% (s.e. = 6.8%) of phenotypic variance for pancreatic cancer, 

respectively (Table 2). Coding variants, including exonic and splicing variants, despite being 

the smallest functional group, explained 1.0% (s.e. = 3.9%) of the phenotypic variance for 

pancreatic cancer. The remaining 1.8% variance (s.e. = 4.5%) was attributed to variants in 

regulatory regions (UTR, ncRNA, and upstream/downstream).

Of the 26 common susceptibility loci reported in GWAS, 23 index SNPs were available in 

our dataset. For the three GWAS loci whose index SNP was not available in our dataset, 

including rs2736098 on chromosome 5p13.33 (TERT-CLPTM1L), rs10094872 on 

chromosome 8q24.21 (MYC) and rs4795218 on chromosome 17q12 (HNF1B), variants in 

strong LD (pairwise r2) with the index SNP were included in the analysis (Supplementary 

Table 1). To assess the aggregate contribution of these 26 GWAS loci to the estimated 

heritability for pancreatic cancer, 72,225 variants located within ±250 kb of the index SNP 

were analyzed. Together these explained 4.1% (s.e. = 0.8%) of the phenotypic variance for 

pancreatic cancer.

A total of 9,445 variants located within ±50 kb of gene boundaries (3’ UTR to 5’ UTR) of 

the established eleven pancreatic cancer susceptibility genes were evaluated for their 

contribution to the estimated heritability. Together these variants explained 0.4% (s.e. = 

0.3%) of the phenotypic variance for pancreatic cancer.

Discussion

Our study presents a systematic investigation of the genetic architecture of pancreatic cancer. 

The heritability for pancreatic cancer was estimated to be 21.2% (s.e. = 4.8%). This estimate 

is substantially higher than previously reported heritability, which ranged from 9.8% to 18% 
12,20,21. We had previously estimated the heritability of pancreatic cancer in the PanC4 

GWAS to be 16.4% (95% CI = 10.4 – 22.4%) applying the GREML-SC approach using 

620,357 directly genotyped variants only12. The use of imputed data in this analysis allowed 

greater capture of the variance explained by rare and low-frequency causal variants. In 

addition, GREML-LDMS approach has been shown to provide more accurate estimates than 

GREML-SC. GREML-LDMS allows for stratification of variants by MAF and LD which 

can minimize the differences in LD between causal variants and analyzed variants and 

consequently reduce the bias associated with the GREML-SC estimate. Therefore, our 

estimate of 21.2% is a more reliable estimate of heritability than previously reported. 

However, it is important to note that this estimate may still not capture the full impact of 

very rare high-penetrance variants.

Heritability estimated using GREML or similar approaches does not fully capture variance 

due to rare causal variants for several reasons. Rare variants are not included in the analysis 

due to 1) not captured on reference panels, 2) low imputation quality, 3) not polymorphic 

before or after converting genotype probabilities to hard calls and 4) minor allele count 

below the recommended threshold of 5. In our analysis, over half (56.3%) of all imputed 

variants were dropped due to poor imputation quality (INFO <0.5). In addition, since 

GREML cannot incorporate imputation uncertainty, genotype probabilities were converted 
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to hard calls resulting in 1.9% of imputed variants dropped due to missingness > 5%. While 

some of these limitations can be overcome with the use of whole genome sequencing data, 

the recommendation of excluding very rare variants (variants observed on 5 or fewer 

chromosomes) is harder to overcome and requires extremely large sample sizes. Even when 

the overall mutation prevalence for a given gene is >1%, which is the case for BRCA25,8,38 

and ATM5,39 for pancreatic cancer, each mutation is only observed in 1–2 patients (with the 

exception of founder effects). This is an important limitation to consider not only when 

considering the genetic architecture of pancreatic cancer but also any disease where rare 

high-penetrant variants are known to cause a considerable fraction of the disease.

The overall prevalence of rare high-penetrance mutations in the population analyzed is not 

known. However, the cases and controls included in this analysis were drawn from the same 

study sites reporting that 4–10% of pancreatic cancer patients have rare high-penetrance 

mutations in established pancreatic cancer predisposition genes4–6. The gene-based odds 

ratios range from 2.58 to 12.336, yet the individual level variants were rare. In contrast, in 

the analysis we present here using GREML-LDMS, these same gene regions explain only 

0.4% of the phenotypic variance for pancreatic cancer.

However, our estimates of the contribution of common variants should be more robust. Our 

analysis demonstrated that chromosomes 9, 7, 8, 16, 5, 2 and 1 were the top contributors to 

the heritability of pancreatic cancer. This is consistent with the GWAS findings as common 

susceptibility loci have been discovered on all these chromosomes. Since imputation 

captures almost all variation at common variants but only a proportion of variation at rare 

variants, our results when partitioned by chromosome are likely driven by common causal 

variants, some of which had been identified through GWAS studies.

In our analysis, known GWAS loci explained 4.1% of phenotypic variance for pancreatic 

cancer, leaving > 10% of the common phenotypic variance unexplained. The large 

proportion of unexplained heritability highlights the need to continue searching for common 

susceptibility loci for pancreatic cancer. SNP array-based genotyping followed by 

imputation will remain a cost-effective strategy for gene discovery of common variants. 

However, larger sample sizes are needed to increase the power of current GWAS. 

Furthermore, as imputation reference panels of large sample size (e.g. Haplotype Reference 

Consortium, HRC) continue to be developed, further improvements in the power to detect 

associations on these variants are expected, particularly those in above average LD 

regions40,41.

Across four functional groups, intronic variants account for most of the phenotypic variance 

of pancreatic cancer (12.4%). Interestingly, 12 out of 21 GWAS loci identified in the 

European population are mapped to intronic variants. However, it is unclear whether these 

variants are of direct functional significance, as opposed to simply being in LD with another 

functional variant in the vicinity. The coding variants, comprising about 1% of imputed 

variants, account for 1% of the phenotypic variance of pancreatic cancer. This is likely an 

underestimate since a proportion of rare or extremely rare coding variants were not imputed 

or were removed by quality control. It is possible that the poor imputation accuracy on rare 
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and extremely rare variants has a greater impact on coding variants than variants in the other 

three functional groups (Supplementary Figure 3).

Heritability of pancreatic cancer estimated in our study is still an underestimation of the 

overall heritability due to the imperfect characterization of genomic variation in imputation 

and the inherent limitations of GREML approach in capturing the contribution of very rare 

variants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Minor allele frequency (MAF) and functional annotation of PanC4 imputed variants.
A, MAF distribution of imputed variants passed all quality control filters showed that 

majority of these variants had a MAF < 0.05. B, Imputed variants were annotated into six 

functional groups by ANNOVA, among which intergenic (52.7%) and intronic (37.2%) 

variants were the two largest groups.
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Figure 2. Estimated variance explained by imputed variants on individual chromosome stratified 
by MAF and LD.
Variants on each chromosome were stratified into 2 MAF categories and 2 LD groups. The 

estimated variance associated with individual chromosome was aggregated from the 

variance explained by four MAF-LD groups. This analysis ranks chromosome 9, 7, 16, 8, 5, 

2 and 1 as top contributors to the estimated heritability.
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Figure 3. Estimated variance explained by imputed variants stratified by MAF.
Variants were stratified into six minor allele frequency (MAF) categories: < 0.01, 0.01–0.10, 

0.10–0.20, 0.20–0.30, 0.30–0.40 and ≥0.40. Across the MAF categories, rare variants with 

MAF < 0.01 accounts for the most variance, followed by variants with MAF ranged from 

0.01 to 0.10
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